criterion performance measurements

overview

want to understand this report?

Pure/base

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 4.691984511911869 4.709399274860819 4.726369925774634
Standard deviation 7.346869135896217e-3 2.0005422511818634e-2 2.6469903933151958e-2

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

Pure/strict

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 3.000243951100856 3.0194942499510944 3.0342213194817305
Standard deviation 1.0188148356974125e-2 1.8540272431805522e-2 2.224644983866258e-2

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

Pure/strict + LLVM

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.8154793744906783 1.8229019242959719 1.8291732299452028
Standard deviation 2.6586844936229096e-3 7.733322935289231e-3 9.954828989513552e-3

Outlying measurements have moderate (0.18749999999999994%) effect on estimated standard deviation.

Pure (unsafe idx)/base

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 3.6919822469353676 3.699673792036871 3.7109876861795783
Standard deviation 3.544460273786536e-3 1.0795128851947656e-2 1.4218402265562225e-2

Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.

Pure (unsafe idx)/strict

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 2.3800935242325068 2.391192656631271 2.3982876539230347
Standard deviation 6.172731518745422e-3 1.1630791872245637e-2 1.6380002360378763e-2

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

Pure (unsafe idx)/strict + LLVM

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.6110730757936835 1.621438062749803 1.6344517236575484
Standard deviation 5.157930976800758e-3 1.3082652943852578e-2 1.7996891516655823e-2

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

Arr/base

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 5.637827694416046 5.674357505359997 5.690264259620259
Standard deviation 1.0225772101852139e-2 2.681279721150718e-2 3.6735075416381456e-2

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

Arr/strict

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 3.410884842276573 3.4603390203167996 3.4777270521347723
Standard deviation 1.8646822621424253e-3 3.3097093294198306e-2 4.015593940313717e-2

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

Arr/strict + LLVM

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 3.0094971591606736 3.0466641428259513 3.0758797690893216
Standard deviation 1.597856678775121e-2 3.812793441501523e-2 5.149203196304982e-2

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

Arr/tailrec/base

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 3.910259452648461 3.9171399011587105 3.922488048672676
Standard deviation 3.1229257583618164e-3 7.13441491772394e-3 9.74787962632509e-3

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

Arr/tailrec/strict

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.6882026884704828 1.6935315146110952 1.6975928354077041
Standard deviation 2.813728819146691e-3 5.130884606409714e-3 6.166932867714603e-3

Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.

Arr/tailrec/strict + LLVM

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.9437559749931097 0.9621164494504532 0.9819784052670002
Standard deviation 1.0363897308707237e-2 2.3941378589873195e-2 3.0434501679514385e-2

Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.

Arr/tailrec/unsafe + strict + LLVM

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.9174792841076851 0.944078465923667 0.9538939148187637
Standard deviation 8.163480414917247e-4 1.7944097092001683e-2 2.266780824720456e-2

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

Arr/tailrec/unsafe + strict + LLVM + no read

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.7802201602607965 0.7885221159085631 0.8026247415691614
Standard deviation 2.337506040930748e-3 1.3611268861680114e-2 1.7633869184817623e-2

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

C++ FFI

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.9111685231328011 0.9148959179098407 0.9201243193820119
Standard deviation 1.9671525806188583e-3 4.971105861116358e-3 6.3365773676847224e-3

Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.