criterion performance measurements

overview

want to understand this report?

Pure/base

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 5.293592917267233 5.309209522946428 5.331057018134743
Standard deviation 6.714443571005625e-3 2.1437793826786684e-2 2.8839878294405468e-2

Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.

Pure/strict

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 3.4902448505163193 3.4951762249693274 3.5001075994223356
Standard deviation 3.223184918640454e-4 6.228133174410739e-3 7.632087213610237e-3

Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.

Pure/strict + LLVM

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 2.0960616419712705 2.107513846208652 2.1189660504460335
Standard deviation 6.95944684829887e-3 1.4473970621614152e-2 1.898484307604335e-2

Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.

Pure (unsafe idx)/base

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 4.41637946665287 4.439133661178251 4.448025447626908
Standard deviation 2.632899209856987e-3 1.575453663484724e-2 2.0534701198836325e-2

Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.

Pure (unsafe idx)/strict

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 2.6181550584733486 2.620990508235991 2.622171862050891
Standard deviation 4.234127700328827e-4 1.9759940079072586e-3 2.5584960511565343e-3

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

Pure (unsafe idx)/strict + LLVM

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.6844604685902596 1.6898449715226889 1.7004752960056067
Standard deviation 1.018717885017395e-4 1.0585231739810876e-2 1.2333657108085613e-2

Outlying measurements have moderate (0.18749999999999994%) effect on estimated standard deviation.

Arr/base

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 6.217116388492286 6.237041675640891 6.255234256697198
Standard deviation 1.7297518750031937e-2 2.1240773385775263e-2 2.397496752854617e-2

Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.

Arr/strict

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 4.0836621932685375 4.1460321334501105 4.172066926956177
Standard deviation 3.5192687012806506e-3 4.4891691592980586e-2 5.660551145481312e-2

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

Arr/strict + LLVM

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 3.7457999335601926 3.7840473630155125 3.807873321697116
Standard deviation 3.579307428041851e-2 4.33977923291775e-2 4.778411646715307e-2

Outlying measurements have moderate (0.18749999999999997%) effect on estimated standard deviation.

Arr/tailrec/base

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 4.683134809602052 4.6988912915500505 4.711313776206225
Standard deviation 6.996320835113156e-3 1.7284070233509096e-2 2.169217860587315e-2

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

Arr/tailrec/strict

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.906794399023056 1.923723266304781 1.9300515990083416
Standard deviation 6.444677876693266e-4 1.1460253080089815e-2 1.4614658359688877e-2

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

Arr/tailrec/strict + LLVM

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.9859063783660531 0.994222316890955 1.0019737053662539
Standard deviation 7.081058779907661e-3 9.086871235574095e-3 1.0499437765178336e-2

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

Arr/tailrec/unsafe + strict + LLVM

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.9245669902302325 0.9283734906154374 0.9352149143815041
Standard deviation 9.790342301130295e-5 6.6031666171660714e-3 7.956320273587886e-3

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

Arr/tailrec/unsafe + strict + LLVM + no read

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 0.8323013326153159 0.8334633220608035 0.8345797037084897
Standard deviation 6.421630581219806e-4 1.393630664769469e-3 1.7125028527659547e-3

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

C++ FFI

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.3541298061609268 1.3556543577772875 1.3564664696653683
Standard deviation 2.0138381656192015e-4 1.4456310581448515e-3 1.8610924804796478e-3

Outlying measurements have moderate (0.1875%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.